SEG3101 (Fall 2010)

Behavioral Modeling

Gregor v. Bochmann, University of Ottawa

Based on Powerpoint slides by Gunter Mussbacher
with material from:
K.E. Wiegers, D. Leffingwell & D. Widrig, M. Jackson, |.K. Bray, B. Selic,




* An introduction to modeling is already given in the slides on
“Introduction to Requirements Analysis and Specification”

 Structural modeling is discussed in separate slides.

* Here we discuss a four selected approaches for modeling
behavioral aspects of requirements. For the last three
approaches, we discuss the UML notations in detalil.

o Structured Analysis

 UML Activity Diagrams, also Use Case Maps (see separate slides)
« UML Sequence Diagrams

 UML State Diagrams

* We also give an overview of UML version 2 and discuss for
each of these approaches, how a model can be used for
analysis (validation, verification — functional and non-
functional) and implementation development.

* Get the habit of analysis — analysis will in time enable synthesis to become your

Wrightl(1867 - 1959)
IR eYhTY. 5

uOittawa SEG3101 (Fall 2010). Functional Modeling



WALLY, ARE
YOU DONE
WITH YOUR  TLL BE
PROJECT DONE
YET? NEXT
k WEEK.

Dilbertcom DilbertCartoonist@@gmail.com

YOUVE SAID,"NEXT
LWEEK"FOR SEVEN WEEKS
IN A ROW. WHAT MAKES

YOU THINK I™ GOING

TO BELIEVE IT THIS

uOttawa

THE FIRST
SIX TIMES?

209 ©2009Scon Adams, Inc./Dist. by UFS, ing.

SEG3101 (Fall 2010). Functional Modeling



Structured Analysis

@ uOttawa




¢ Data oriented approach

» Based on analysis of information flow
* Models
» Dataflow Diagram (DFD) — flow of information in system

» Entity Relationship Diagrams (ERD) — describe data
» Data Dictionary (DD) — define all data elements
» State Diagram — describe state-based behavior

* Mainly used for information systems
* Extensions have been developed for real-time systems

* Analysis consists of modeling current system (can be a
manual system)

* New system derived from understanding current system

* What if there is no current system?
uOttawa SEG3101 (Fall 2010). Functional Modeling >



> o i L . e wal ¢ e =l =R [y - . - "&‘-
5 : B 7 i i P I i i i 7 T B ® TR

Structured Analysis is historically important. Here are some of
the more popular versions:

* Structured Analysis and Design Technique (SADT) by Doug
Ross

* Structured Analysis and System Specification (SASS) by
Yourdon and DeMarco

® Structured System Analysis (SSA) by Gane et Sarsan

® Structured Systems Analysis and Design (SSADM)

* Structured Requirements Definition (SRD) by Ken Orr

® Structured Analysis / Real Time (SA/RT) by Ward and Mellor
®* Modern Structured Analysis by Yourdon

6
uOttawa SEG3101 (Fall 2010). Functional Modeling



7 . i 7 7

1. Analysis of current physical system

 DFD to show current data flow through the organization

» Shows physical organizational units or individuals (could be called
“agents”)

2. Derivation of logical model (existing problem domain)
» Logical functions replace physical agents
3. Derivation of logical model of proposed new system

 DFD modified to reflect system boundaries and updated organization
of the environment

4. Implementation of new system
 Some architectural alternatives are considered

uOttawa 7

SEG3101 (Fall 2010). Functional Modeling



* Elicitation plan: f'lnterwew with primary contact, sailing secretary of Dartchurch sailing club,

i Dave Rowntree. To be held at theur pface on 6/6/00

ot From phone conversatxon we know they are aﬁer a cheap (T) PC~based sys-__

tem to calculate results of yacht races

Establish basic problem. et
Establish role of DR is anyone else mvolved’?
Envest:gate financial aspec’cs '
‘How (m outline 1) does it work now?
What are the current probiems? _
Wha_t_ are they looking to achieve?

* Elicitation notes:

Interview with Dawvid Rowntree, sailing secretory, Dawtchurch
sailing culr- (DSC) 6% June:

Basic scenarvio- - They have aw old spare PC, reckons they
could use it to-help work out race results. Curvently all done by
hand.

DR well experienced v the process (frequently worked out
results, etc. himself). Probably knows asy much as anyone here
but Jimv Lock bit of a technical whigg if needed.

Cagey about money side - really wanty to- know “how much
it woulds cost?”. Advised that after today’s sessiony, we'll give
quotes for basic systemw and “all singing’” one:

Source: Bray, 2004

uOttawa

SEG3101 (Fall 2010). Functional Modeling



i

Cuwrrent yystem: -

Sailovy enter boaty on race sheet priov to-race (at least 1
howr).

The “O0D” (Officer of the Day!) tukes race sheet out on “com-
mittee boat” to- stowt race (or sheets - one per race and they
oftenv have several stowting one after the other). Some “race
officers” (proper name for OOD!) allow entries at the stowt (not
really allowed but it’s up to- them). At end of race RO entery
finish times of boaty on race sheet. (No- stowt time per boat - all
ot at same time.) Detaily on sheet ave:- boat name, sail
number, class, helm name: (the helm is the one sailing it).
Mostly optional - only really need sail number and class.

Back at clud;, RO works out resulty and entery ovw resulty sheet
(see attached copy). (May leave it to- classy captoing (CCs).) Easy
for OD (one design classes) tediows for handicap classes (which
arve?!). Some races for one type of boal, othery for diffevent types!
For 2nd sovt, finish times adjusted by handicaps. For ODs, just
put in finishing ovder. (So-don't actually need finish times for
those (1) - just positions:)

Handicap iy a mudtiplier for elapsed time (ET = finish time -
stant time). Based onv RYA (Royal Yachting Association) listy
(coby ow race notice board). RO car refer to- list but wsually
knows: Example - stout at 12.00, finisdh at 13:14:22 (to- nearest
second, notel) - elapsed time = 1:14:22. Covwert to- secondy -
4462, thew elapsed time = finish time wx 1000/handicap.
(And. therve's another, similar, way of doing it - worry about
that later!)

Resulty are written up ow resulls sheet and posted: o race
notice boowd: May be right after race (move or lesy) or may be
a week later (if RO iy lax) (avoiding delays is a polential
plus heve,).

Bouty may not finishv av race - could be DNF (did not finish)
or RTD (retived). (What's the difference? - we needn't worry!)

Quantities: - about 200 boaty inv clul: Each class; 2 ov 3 racey
per week;, about 10 boaty per race (max, say 30). 7 classes of
boat but some classes are “open”. (Same ay handicap classes!)
Different classes of boat may enter handicap races. (En??777)
So; some classes of race ave for one clasy of boat (the OD
classes), othery are for several classes of boat (handicap
cdasses). Actually about 20 dasses of boat. (7 classes of
raced!)

Intervested: inv systes prinding out race entry forms with race
detuily. ROy can then enter resulty into- systesw and, it wills print
out result sheety.

(There are some “oddities” regarding the race resulty
sheet: -

* Elicitation notes (suite)

“Recall no-” iy just another noune for “sail muwmber”
The “PYN” colunmwv is used for PY and TMF handicaps
The corrected time iy seconds (not hws, ming and secs)
The “overall” columm isn't wsed:

Otherwise, it's just finel)
And there are seviey of races but out of time - follow up next
week 10:00 Thuwsday - same place.

SEG3101 (Fall 2010). Functional Modeling



Domain model (ERD)

boat-class

race-class

boat

race-entry

race

uOttawa

series-entry

series

helm-name

boat-class

handicap

handicap-type
handicap-value

race-details

race-class

race-class-name
race-class-type
race-date
start-time

Data Dictionary (DD)

= {alphanumeric}®%;
= (* the person who sails the boat *)

::= boat-class-name, handicap;

= (* a particular type of boat *)

::= handicap-type, handicap-value;

1= (* a way of compensating for different inherent
speed when different boat classes race against
each other *)

n=“PY” | “TMF”;

= {digit};

.= race-class-name, race-date, start-time,
[race-name] [course];

u:=race-class-name, race-class-type, [handicap-type,
minimum-handicap, maximum handicap];

= (* an indication of the boat-classes) (that may
enter a race *)

::= boat-class-name | '{falphanumeric}?;

i:= “one-design” | “handicap”;

u=day, ":", month, ”:”, year;

2= hour, ”:”, minute;



RO 2
helm 1 race
enter boat enter programme
bW in race finishes
helm boat-id boat-id finish race-details
boat-details SS 3
race-details create
Y race sheet race sheet
cc |4
update boat-details boat-id,
boat list finish
RO |5 ‘ IE
calculate boatist calculate
h'cap result boat-details boat-details 0D result
handicap_ 0D_race-
boat-class race-results results
race-results RO 7
handicap list race results -
sheets post
results
race-results i
boat-class series-
results
] ° I = RO ’ o l series- results
update calculate results series results
handicaps series result sheets
boat-class

RYA

uOttawa

Left: SSADM Diagram showing data flow
(arrows), functions (boxes with indication of
agents), and stored data (between two
horizontal lines). The simple boxes are agents
or external data.

Below: A more modern notation is shown. Here
functions are presented in circles. A different
system structure is adopted in this diagram.

race
result

user

calc.
series
result

produce \reports
reports

user

SEG3101 (Fall 2010). Functional Modeling



Definition of the function Calculate-handicap-result

calculate-handicap-result
get race details
for each race entry
case finish of
finish-time
if handicap-type = PY then

corrected-time := elapsed-time x 1000 / handicap-value
else (*TMF handicap*)
corrected-time := elapsed-time x handicap-value
insert into sorted list by correctedtime
other (* DNS etc. *)

add to end of sorted list

boat-class

get
race
entries

get
handicap

Refinement of the function

race-entry boat-class result

Calculate-series-result

elapsed-
time

corrected-
time rank

finishers

calc.
elapsed
times

calc.
corrected
times

uOttawa



helm

boat-details

Y
cC 4

update
boat list

) boat-details

helm 1 RO 2

boat-id
finish

| JE

calculate
h'cap result

boat-class

handicap list

boat-class

Ccc 8

update
handicaps

boat-list

race
enter boat enter programme
in race finishes
boat—id\ boati%ish race-details
\ i i ss 3
race-detail create
race sheet race sheet

I [ |

calculate
boat-details boat-details 0D result
handicap_ OD_race-
race-results results
race results __race-results |- ! 7
sheets post
results
race-results .
series-
results
Series- results

calculate results

series result sheets

series results

boat-class

Notes:

The blue line defines the
boundary of the system-to-be
with its environment. The
yellow functions are
performed by the system.

The diagram defines implicitly
the system interfaces.

It also suggests an internal
design for the system-to-be.
In this case, no revision of the
system structure has been
proposed for the new system.

13

SEG3101 (Fall 2010). Functional Modeling



8 . i 7 - 7 . i e

* Overemphasis on modeling (there’s more to analysis!)
®* Models the preexisting solution system (rather than the
application domain)

* Essentially process-based models (encourages structural
model of the preexisting system)

* Difficulty in integrating DFD and ERD models
* No explicit mention of requirements!

 Implicit assumption that the preexisting system already meets the
requirements apart from not being computer-based!

« SSADM! eventually added the Problem/Requirements List (PRL)

® This assumption is carried through into design (new system
Inherits its basic structure from the preexisting system)

* Lack of a truly behavioral specification

 Where are the process descriptions, a la SDL?
[1] Structured System Analysis and Design Methodology

14
uOttawa SEG3101 (Fall 2010). Functional Modeling



Introduction to the Unified

Modeling Language (UML)

@ uOttawa




.....
. . | : .

S e

* A model is an abstraction describing a subset of a system
(filtering out unimportant details)

* A view depicts selected aspects of a model

* A notation is a set of graphical and/or textual rules for
depicting views

* Views and models of a single system may overlap each other
— examples:

o System: Aircraft
* Models: Flight simulator, scale model
* Views: All blueprints, electrical wiring, fuel system

* *
System Model View

Described by Depicted by

®* Programming language vs. model
uOttawa SEG3101 (Fall 2010). Functional Modeling 16



: State Im Rumaug
; / /Jacobson

Booch
—  (oRT——
(00SE] 00A
LYY
(oMT '94}~ (00SE 04
r
1995
 SOMA]
1997 ﬁ
RUP, OEP
2000
IIIIIFIEDO
MODELING =
2003 pored | I,
290> 2005 UML 2.0
e UML 2.1.2
2008 sML 1.1) (BPMN1.1) [DSLs)

Source: http://en.wikipedia.org/wiki/Unified_Modeling_Language

uOttawa

17

SEG3101 (Fall 2010). Functional Modeling



.....
.....

! . i ! i

..... -

® Object Management Group (OMG) standard
 Version 2.0 released in 2005
e Current version is 2.3 (May 2010)
* http://www.omg.org/uml/

®* Some key points (new in Version 2)
e Restructuring of the metamodel
* Infrastructure (semantics) and superstructure (notation)
 New or modified diagrams
« Simpler and more powerful profile mechanisms
« Diagram exchange format (between UML tools)

 OCL 2.0 (Object Constraint Language — for input/output assertions,
Invariants, etc. (resembles first-order logic)

18
uOttawa SEG3101 (Fall 2010). Functional Modeling



* Few changes
» Use case, object, package, deployment diagrams

* Major improvements but less relevant to requirements
engineering

« Component and communication (collaboration) diagrams

* Major improvements and interesting for requirements
engineering

» State machine (integration of SDL as a profile), class, activity
(complete re-write of the semantics), and sequence diagrams

* New
e Timing, interaction overview, composite structure diagrams

19
uOttawa SEG3101 (Fall 2010). Functional Modeling



® According to UML Reference Manual
« Structural
» Class, object, composite structure, component, and use case diagrams
* Dynamic (that is, describing dynamic behavior)

o State machine, activity, sequence, communication, timing, and interaction
overview diagrams

e Physical
* Deployment diagrams
 Model Management

» Package diagram

20
u()ttawa SEG3101 (Fall 2010). Functional Modeling



uuuuu
uuuuu

® Use case diagram

» Use cases structuring
* Class diagram
e Domain modeling

* Activity diagram (concepts much related to concepts of Use
Case Maps)

» Workflow and process modeling
® Seguence diagram

* Modeling of message exchange scenarios
* State machine diagram

» Detailed behavioral specification

21
uOttawa SEG3101 (Fall 2010). Functional Modeling



Activity Diagram

@ uOttawa




.....
| .

* An Activity Diagram models behavior in terms of sub-activities
(actions) and data flow. Sometimes, the flow is simply control
flow (a token without data).

* Actions are Initiated because

» The required input data (or control) tokens become available
» because other actions finish executing, or

 the action is the initial action and all required input data has been provided
by the environment in which the activity diagram is executed

e Some interrupting event occurs and the normal flow of control is
changed

* The behavior of an action may be defined
 Informally, by its name and an explanation

e By input and output assertions about input and output data objects and
the “state” of the system

» By defining its behavior by a separate Activity Diagram
uOttawa SEG3101 (Fall 2010). Functional Modeling 23



~ : . e, - L
A F 50 gt Y : - 2 4 N P A
e L T : - — :

° In UML version 1, the way the semantics of Activity Diagram
was described, was confusing. (It was based on State
Machines, which is not natural, and nobody liked it).

* In UML version 2, the meaning of Activity Diagrams has been
explained (in a completely different manner). It is now much
more easier to understand, and it is based on the tokens of

Petri nets (which are used for modeling control or data flow
tokens).

®* There are also some interesting additions to the notation
» Terminal node types, pins, partitions, exceptions

uOttawa 24

SEG3101 (Fall 2010). Functional Modeling



® Describe the
dynamic behavior
of a system as a
flow of activities
(workflow)

* Flow
e Seguence
o Alternative
o Parallel

® Note: in this diagram,
the data flow objects are
not shown. They may be
shown as boxes on the
control flow lines.

uOttawa

Enter pin

ATM Machine

[ Enteramount

-
_ Check account balance )

[balan

ce == armouni] % [balance = amaouni]

Wy a ok

.
[f_ Take maney from slot }

{ Dehitaccount 3

guard expression

Authorize
branch ,[
[ralid PIN] l’ [Irvalic PIN]

Showy balance

mErge Ty

Eject card

W« end

SEG3101 (Fall 2010). Functional Modeling

25



E o i a » e
..... Pl i i 5 e

® Join: action4 starts after actionl, action2, and action3 have
completed (synchronization)

* Fork: flow continues to action2, action3, and action4 after

actionl (concurrent execution)

actionl action3
oo (o)
[cond3]

26
UOttﬂWﬂ SEG3101 (Fall 2010). Functional Modeling




.....
......

® Decision: action2 or action3 or action4 occurs after actionl

depending on condition

<decisionl nput=: E]

decision condition

* Merge: flow continues to action4 after either actionl or
action2 or action3 (no synchronization)

27
u()ttawa SEG3101 (Fall 2010). Functional Modeling




* Action3 starts after actionl and action2 (implicit join) and then
action4 and action5 can start (implicit fork)

D

* Pre- and postconditions may
also be assigned i‘éiiipii“iﬁiiiﬁhﬂj
vending machine contains,
1

Dispense
Drink

<<localPostconditions>
The wending machine dispensed

the drink that is selected

28
uOttawa SEG3101 (Fall 2010). Functional Modeling



ad Activity Final / ad Flows Final /
Close Close S
o ".‘

* Final activity node (left)
» Terminates the entire activity (and returns to the parent one, if any)
* Final flow node (right)
« Only terminates the flow (the activity continues if there are unfinished

parallel flows)
Install Deliver
Component Application
; [no more

[more components  components
to be built] to be built]

[no more
components
to be installed]

Build
Component

[more
components
to be installed]

29
uOttawa SEG3101 (Fall 2010). Functional Modeling



x . .4"\4;::;?_,_%_ L
P e
; t.'/-'*‘ ".. -“"--—-’ . 2
A - ) A'S . 3 N, R,
:;f’_ -~ - : w4l : b~ ~' ;.- Ll a: -T e 2 el - Rt N
) Order Order
Order Order [Filled] [Filled
Filling Shipping Order — Order
Filling Shipping
{stream} Order (stream) {stream} {stream
[Filled]
«selection»
FIFO withinl «transformation;]j
Order : Order Order

* Data (objects) passing along activity edges (can be specified
as action pins — see right and bottom)

* Activities may have multiple input and output pins

*® Possibility to characterize properties of a data flow link:

» “stream” means that several tokens may be generated and waiting to
be processed. Different selection behaviors (e.g., FIFO, LIFO)

» Some transformation behavior may be specified

* Possibility to constrain the nature (e.g. state) of the object
uOttawa SEG3101 (Fall 2010). Functional Modeling



Process Order «precondition» Order complete «singleCopy»

Requested Order: Order «postcondition» Order closed
[order
= v ejectefl]
equeste Receive Fill Ship A
Order Order Or Sok_Order Orde Ordey
accept

ed]| @

Invoice

31
uOttawa SEG3101 (Fall 2010). Functional Modeling



* Partitions replace “swimlanes” in earlier UML versions

® Can have multiple dimensions and be hierarchical
*® Getting closer to UCM components, but not quite there yet

g
=
E
&
a) Partition using a swimlane notation
E
)
2 E
= #
gl 2152
= a2 & =
=l I R
2 2
o 2 |z
=1 IR B
o £ E "
L=
77

b) Partition using a hierarchical swimlane notation

uOttawa

[hmension name

Dimension name

Partition
MName-2

Partition
MName-1

c) Partifion using a mulfidimensional
hierarchical swimlane notation

32

SEG3101 (Fall 2010). Functional Modeling



uOttawa

e B
gk
3
L]
=1
gB
=
£ =1
[ =7
= R
Invoice
2|8  /VIEKS
S Payment
Denver —Reno
° [order
% rejected]
o
S i Shi
S = ’ Fill p
[0]
& [&rder \_Order Order
= accepted]
jat]
3
£ Mak
5 ake A
= ccept
| Payment P
Paymen
o
o
=
Invoice

33

SEG3101 (Fall 2010). Functional Modeling



g i g - g 7 > i
.....

* An activity zone (left) can have exceptions (zigzag lines)
handled by other activities (right)

i

- ~ - ~,
SmgularMatrix
l Invert ' Substitute
u:_ 1 . y
Multiply
Vector Overflow 4 A
Substitute
f }
\ y,
\ W,

Results

22 34
uOttawa SEG3101 (Fall 2010). Functional Modeling




Order Order
cancel

rejected]

|
|
| [order reques
|
|

Invoice

35
uOttawa SEG3101 (Fall 2010). Functional Modeling



UML and URN

@ uOttawa




- - - - 8

* Use Case Diagrams
» Actors, system boundary, and structure of use cases

» Applicable to system, subsystem, component...
* Class Diagrams
 Domain modeling
* Activity Diagrams — here one can also use Use Case Maps
* Process modeling (business or other)
» Modeling of data and control flow
®* Segquence Diagrams
* Modeling interactions between actors and system or components
* State Machine Diagrams
* Modeling detailed behavior (objects, protocols, ports)
* Modeling the behavior of the system (black box)

37
uOttawa SEG3101 (Fall 2010). Functional Modeling



* UCM and activity diagrams have many concepts in common

» Responsibility <> action

» Start/end points

 Alternatives (fork / join)

» Concurrency (fork / join)

o Stub / plug-in < action / sub-activity diagram

» Association between elements and components / partition

* Both may represent operational scenarios and business processes

38
UOttﬂWﬂ SEG3101 (Fall 2010). Functional Modeling



Process Order aprecondition: Qrder complete
Requested Order: Order apostcondiions Order closed asmgleCopy=

|order
rejected |

Reguested
Order

Warehouse
Ship
Order

Office / \
[ Order

Close
Order

xX—

Send

Invoice Acccept
Payment
\ /
Client \_)(_/
Make
Payment

39
uOttawa SEG3101 (Fall 2010). Functional Modeling



.....
.......

* Dynamic stubs with several plug-ins
 Activity diagrams have a single sub-activity diagram per action

® Plug-ins can continue in parallel with their parent model

» Sub-activity diagrams must complete before returning to the parent
activity diagram

® 2D graphical layout of components
* Definitions of scenarios (integrated testing capabilities!)
* Integration with GRL in URN

40
uOttawa SEG3101 (Fall 2010). Functional Modeling




i i : i i

* Data flow modeling

* Interruptible regions

® Conditions on parallelism (branches of an AND-fork)
® Constraints on action pins

* Integration with UML

A2 41
uOttawa SEG3101 (Fall 2010). Functional Modeling



Model-Based Analysis

(for Workflow models)

@ uOttawa




Sequence Diagram

@ uOttawa




. Wi L .
.....

* Major improvements in UML version 2, based on ITU-T’s
Message Sequence Charts (MSC)

®* The most important one: combined fragments
® Other improvements

* (A)synchronous interactions
References

Hierarchical decomposition

Temporal aspects

44
u()ttawa SEG3101 (Fall 2010). Functional Modeling



* Describe the dynic behavior as interactions between so-
called “participants” (e.g. agents, actors, the system, system
components). For each participant, there is a “lifeline”

e

participant aChain aHotel
object ———»| HotelChain Hatel
window
Lserinterface

I
|
I
|
makeR eservationd:void | makeReservation(void I

frs- | e |

t o Wﬂ?mﬁm
for each day] isFoorm=availabled:boolean

condition
[ifﬁmm] aReservation

Feservation
—h.

aMotice
Caonfirmation
creation Z_,

activation bar ™
|| If & roorm is available for |
| each day ofthe stay, make |

|

|

K« deletion |‘L"""--—-._._ lifeline __:,..| a resereation and send a
| | canfirmation,

I I | 45
u {}TTEWEI : : ! SEG3101 (Fall 2010). Functional Modeling




.....
.......

* Participants, shown using ®* Messages can be
lifelines, participate in the synchronous or
Interaction sequence by asynchronous
sending / receiving
Messages : Class1 : Class?

. Student s asynchronous()
: synchronous()

46
UOttﬂWﬂ SEG3101 (Fall 2010). Functional Modeling



. AIIow multiple sequences to be represented In compact form
(may involve all participants or just a subset)

* Combined fragment operators
alt, for alternatives with conditions

opt, for optional behavior

loop(lower bound, upper bound), for loops

par, for concurrent behavior

critical, for critical sections

break, to show a scenario will not be covered

assert, required condition

ignore/consider(list of messages), for filtering messages
neg, for invalid or mis-use scenarios that must not occur
strict or seq, for strict/weak sequencing (WHAT IS THIS ?)
ref, for referencing other sequence diagrams

47
uOttawa SEG3101 (Fall 2010). Functional Modeling



* Alternative (operator alt)

» Multiple operands (separated by
dashed lines)

» Each operand has guard condition
(no condition implies true)

* One will be chosen exclusively —
nondeterministically if more than one
evaluates to true

o Special guard: else

 True if no other guard condition is
true

uOttawa

bank : Bank

account ¢

CheckingAccount

ML
L

getBalance { ) |

ba Iancp

T LT U

alt

[balance >= amount]

|

T
addDebitTransactjon { check
Murnber , armougnt )

addlnsufﬁenﬂ:unAFee (3
T

nDteRetumedChedI: { theCheck

returnCheck theCILeck 3

=

SEG3101 (Fall 2010). Functional Modeling

48



® Optional (operator opt)

» To specify a
guarded behavior

fragment with no — &

alternative
e Special case of alt

* Equivalent to an alt
with two operands

e The first is the same
as the operand for
the opt

 The second is an
empty operand with
an else guard

uOttawa

register . ReqgisterOffice ar_: accountsReceivable

drama : Class

getPastDueBalance { studentld )
pastDueBalance
{ ____________________________________________

opt P,
i i
[pastDusRalance = 0]

addStudent { studentId )

|
|
|
|
|
|
|
|
|
3] B

|
|
: =
|
getCostOfClass () l I
T L
ClassCost |
e [ T
chargeFaorClass { | I
1] |
= | |

SEG3101 (Fall 2010). Functional Modeling

49



* Loop (operator loop)

» Loop fragment may
execute multiple times

» At least executed the
minimum count

e Up to a maximum count
as long as the guard
condition is true (no
condition implies true)

SEqUence diagram_l)

Dperator Drder: Catalog:
, 1) .getTotal ' o :
| |
| I
I I
| |
| T
| loopd |
1 [ o 1
| [for each item 2).getite mPrice [
|
|
I
1 3 price
| - — 2P -
| I
i addToTatal :
| I
I |
I T
| |
| |
1 43 total 1
- R .

1 |

minimum, maximum count

Executes 1 to 3 times

Source for Password Example: UML Reference Manual

uOttawa

M [password

not valid] 4@ rd condition

enter (password)

—
valid = verify(password)

—
o

SEG3101 (Fall 2010). Functional Modeling

50



® Concurrency (operator par)
 Two or more operands that execute in parallel

hungryPerson ¢ Person oven . Microwavelven

cookFood ) |

nukeFood )

=

|

|

|

|

|

|

|

| i
|

|

| rotateFood | )
|

| |
|

| yurmyFood

r """""""""""""""""" T
|

51
u()ttawa SEG3101 (Fall 2010). Functional Modeling




* |s the interaction on the right a valid sequential trace that can
be generated from the interaction with the par combined
fragment on the left?

* No! The sequences of the two operands may be interleaved
but the ordering defined for each operand must be
maintained.

=il Sequence DiagramJ interaction seConnecter T =i Sequence DiagramJ interaction seConnecter T

- surfeurinternet : Serveurlinternet - surfeurnternet - Semveurinternet

guestion("Comment générer la documerttation sous Rational Rosp" "F

consulterSite"hitp: /developpez com™)

consulterSitel hitp: developpez. com™ reponse(1, "Utilises SODA')

consulterSite("http: e developpez. ngtforums")

consultersitel bitp: e developpez ngtforums!")

guestion("Comment generer la documertation sous Ratiopal Rosg","Forum

reponsell,"Utilises S0O0A"Y

52
uOttawa SEG3101 (Fall 2010). Functional Modeling



o What are valid dvd

sequential traces [ar | |
for this interaction [P _ displayFrame
with the critical : |
operator? |7 e — H
critical | pause ;J
|

=1

|

|

resume

player repeatedly
displays frames. At any
time (because it is within a par combined fragment), the user
can send a pause message to the player. Afterwards the user
sends a resume message. Because these two messages are
In a critical region, no displayFrame message may be
Interleaved. Therefore, the player stops displaying frames
until the resume message occurs!

|
|
* In the main loop, the :
|
|

Source: UML Reference Manual

53
uOttawa SEG3101 (Fall 2010). Functional Modeling



i 3 . % 3 o

* Concurrency (operator

break)

» Execute the break
combined fragment if the

guard condition is true and
then jump to the end of the

Interaction

* If the guard condition of the
break combined fragment is
not true, do not execute the
break combined fragment

and continue with the

Interaction below the break

combined fragment

uOttawa

sd Cash Check )

bark : Bank theCheck @ Check account @ Checkingaccount

cashCheck { theCheck )_ | | |

break j

|
|
[balance < amount] 4
|

addInsuffientrundrFes | )

nDteRetumedChecll { theCheck ) |

returnCheck (ihech?ck i)

il

L J

addDebitTransacE]Dn { check
Mumber , armodnt )

L J

storePhotoOfChegk ( theChedk )
T

h
— | 7

L J

54

SEG3101 (Fall 2010). Functional Modeling



® Assertions (operator assert)
» Behavior of assert combined fragment must occur

» Often combined with consider and ignore
» Consider: other messages may occur but we do not care about them

« Ignore: listed messages | sd M ignore {t,r})
may occur but we do not

care about them X Y Z
| | s :
* State invariant i - 7
| |
* Evaluated when the next | 1consider (gv.ud | |
event occurs on lifeline i v = |
« Small rectangle with essel) g | |
rounded corners or | {Y.p == 15) |
curly brackets ; ; |
e Useful for testing | Y |

55
uOttawa SEG3101 (Fall 2010). Functional Modeling



.....

* What are valid sequential traces for this interaction with the
assert and consider operators?

sd motorControU

controller motor

| start
I
|

V

consider {start, stop} ]
|

assert
stop

v

* Start; any other messages except start may occur; stop must
OCcur

Source: UML Reference Manual
56
UOttﬂWﬂ SEG3101 (Fall 2010). Functional Modeling



i careful : regular : )
-Order Distributor Distributor Messenger
dispatch
o I
loop J [for each line item)
operator |-  all [value > $10000] i
dispatch ’
)I:I P
[else] |
- 1l
opt l [needsConfirmation] confirm

i

. 57
uOttawa SEG3101 (Fall 2010). Functional Modeling




* References (operator ref)
» Called interaction use

* Includes cust ; Customer tellr ; ATM theirbank ; Bank
anOther I withdrawCash ({ accounthumber , | ]
I amount ) | 1
sequence -
I getBalance ( accounthumber ) I
diagram : r— =
° Parameters I ‘ Balance Ln::;p(acmuntﬂumher} :
may be : VIR - = TR &
passed and | |
a result | [ - |
returned | dehit { accountumber |, amaunt ) ’Ill
: -
Debit Account (accountNumber,
| amount)
| |
| L u
| cash —

58
u()ttawa SEG3101 (Fall 2010). Functional Modeling



-

* Referenced seguence

«d Balance Lookup (Integer : accounthumber ) : Real /l
therBank : Bank kedoer : Acoountledger buyersAccount : Checkingéccount Balance Lockup : Real

I | | I R
i | $
| | tnﬁw*nvm
l l l
| retrevesccount | |
I B ot | I
s | |
! | |
|
i | I
| |
| r T
I |

59
llOttﬂWﬂ SEG3101 (Fall 2010). Functional Modeling



* Reference can connect to a gate (border of diagram frame)

.

uOttawa

il

E withdrawCash ( accounituember , I l
| amount ) | |
= 1
I getBalance ( aoconihumber ) .__g__l
| Balance Lookup(accountNumber) :
E 1‘-‘---“-“-%--- m
i
| ot 7 i
! o I
] |
accounihiumber | smount w7
I M N
j sd Balance Lookup J
! = s v
|
L -:ad-l theirBank : Bank ledger ; AccountLedger buyersaccount ; CheckingAccount
I [ I
I | I
gaﬂala':a{ac:umﬁhrrbw)l : I
ratrisveAccount (accounthumbdr ) |
I
getpabarca () | |
f =
v mrr s m e m s —— - I |
| | I
I I |

60

SEG3101 (Fall 2010). Functional Modeling



=d verifierSDmmeJ interaction verifierSomme

 Client - distributeurBillet

ref yerifiersomme. datail

sommefcorrect)

(17

™ verifier que le solde permet le retrait */

codeOkSommelk j

uOttawa

sd verifierSumme_detailJ interaction verifiersomme {241

- distributeurBillet:: Affichage - distributeurBillet: Merificateur

sammelt_valeur)

verfSommeit valeur)
estOk(Boolean)

SEG3101 (Fall 2010). Functional Modeling

61



DurationObservation—m—___|

=

DurationConstraint

TimeConstraint

TimeObservation —— |

sd UserAccepted )

‘User

|
: Code d=duration
|

(ACSystem

I

1

N

CardOut W
|

=now

|
{t“t+3}‘:£,///

Unlock

=

uOttawa

SEG3101 (Fall 2010). Functional Modeling

62



g g g 7 o

* Behavioural view similar to sequence diagrams but presented
with a graphical syntax inspired from signals in logic circuits

® Can be used to specify time-dependent interactions
* Primary purpose of the diagram is to reason about time

i FOCUS On td Timimg Diagram/
conditions e pen
h . _ Wait Access Cod
C - ar-]g”']g ;'I‘ wait Card ode 012
within and Idle
Start , , , , Ok Bt +31
among ‘_«,
. . =
lifelines § MeCard
along a Z  HasCard
linear time ° s o
- B
axiIsS g ldle >< Wait Card w}éimccaxs Idle
.:. 1t —1—
Time (ms) QO {0 20 20 40 80 @0 FTO 20 90 400 440 120 130 140 4150 160 170 120 140

63
uOttawa SEG3101 (Fall 2010). Functional Modeling



* Similar to an activity diagram
that references or includes
sequence diagrams

sd OwverviewDiagram lifelines User, :AEE'ystaan

ref )/

Establishfccess"lllegal PIMN™)

® -

{0.251
* Give an overview of the flow = +
of control = =
* Nodes are interaction oo
diagrams | |

COx—
_ IE

I
I..-"'
[pin ok] Q‘u
1
i
I
1

N

@< 5 !

() OpenDoor  |{1.141
\

Source: http://www.visual-paradigm.com/V PGall ery/diagramg/I nteractionOverviewDiagram.html
64
uOttawa SEG3101 (Fall 2010). Functional Modeling



State Machine Diagram

@ uOttawa




# : : i . B e i i 2 e

* Model discrete behavior (finite state-transition systems)
o System

« Component

» Class

 Protocol

* Several formal definitions as well as textual and graphical
syntax of state machines exist

» \We focus on the state machines of UML 2.x

® Several techniques and tools exist for defining, analyzing,
combining, and transforming (e.g., to code) state machines

66
uOttawa SEG3101 (Fall 2010). Functional Modeling



.....
.....
.......

i : i i i

* A machine whose output depends not only on the input but
also on the history of past events

* |[ts internal state characterizes on
this history \E—
Lamp O‘nj
on
off
\ 4
off
Lamp Off

4

. 67
uOttawa SEG3101 (Fall 2010). Functional Modeling




* Describe the dynamic behavior of an individual object (with
states and transitions)

fritial state

Zursar to S50

T,
Fejecting
) . Getting SEN

Cancelcuit -
) e RetryiClear S3N, PIN entries | event  guard  aclivily

/ \ J F're;rs |{E'5.-'||{E'5.-'.+= ta h]IDisprgw key

_,-"'
\ transition — | | Press shif-tab OR move cLrsar to
S8M fiele/Cursar to 55N

[notwalid)iDisplay efrar messade submit

Fress tabh OF move cursor to PIM

. feldizursorto F M
final state

- T
® Walidatiag ]

realids .
[alid)/Stert transaction | 00 e dete SSH and P'NJ\ submit s
action

~—

Fress <ev[key I= stift-tab/Displaydot

68
uOttawa SEG3101 (Fall 2010). Functional Modeling



off

Aon/print(”on”)

Lamp

C Off

™ Off

S

Mealy Automaton

{r—

[pnnt(’ on"))—

off

Lamp
Off

off

S —

S

Moore Automaton

* UML allows both types to be mixed

uOttawa

69

SEG3101 (Fall 2010). Functional Modeling



—
+
| -
fd
O
I Y—
- (v -
. o
i}
O
~
- //
@) y—

Y

@)

o

5

> 1

off

70

SEG3101 (Fall 2010). Functional Modeling

uOttawa



T R
......

Lot

®* |In general, state machines are suitable for describing reactive
systems based or events

* Not appropriate to describe continuous systems (e.g.,
spacecraft trajectory control, stock market predictions)

threshold

time

71
UOttﬂWﬂ SEG3101 (Fall 2010). Functional Modeling



Composite State

Initial

Pseudostate top _
Trigger

[Transition

O

72
u {}TtEWEI SEG3101 (Fall 2010). Functional Modeling

Final State Action




|

LampOn

2
> entry/lamp.on(); € >

exit/lamp.off();
N J

el

A2, 73
uOttawa SEG3101 (Fall 2010). Functional Modeling



a I
LampOn o f LampOff A
entrvi| . off/printf(“to off™);
y/lamp.on(); > entry/lamp.off():
exit/printf(“exiting”); e L iy
_exit/printi( 97,  exit/printf(“exiting”);
- T

Resulting action sequence:
printf (“exiting”) ;
printf (“to off”) ;

off/printf(“needless”);

printf (“exiting”) ;
\\\¥1amp.off(), | printf (“needless”) ;
lamp.off () ;

® Output actions: transition prefix
® |nput actions: transition postfix

74
uOttawa SEG3101 (Fall 2010). Functional Modeling



 The action terminates, or

* We leave the state via an exit transition

-

Error

~

“do” activity j

o

entry/printf(“error!”)/
do/alarm.ring()

/

J

uOttawa

75

SEG3101 (Fall 2010). Functional Modeling



® Conditional execution of transitions

bid [value < 100] /reject

. N\
> bid [value >= 200] /sell{

Selling

Happy J

bid [(value >= 100) & (value < 200)] /sell

A 4

{ Unhappy ]

®* Guards must not have side effects

76
uOttawa SEG3101 (Fall 2010). Functional Modeling



®* Composed states, to manage complexity

[ Lampoff | flash/

Lentry/lamp.off()J\
7

off/

on/ on/
\ 4

( LampOn on/

Lentry/lamp.on()J(/

uOttawa

=lEsiion

Entiy/iamj:oni)

= ESI@)

Enty/am|: o)

SEG3101 (Fall 2010). Functional Modeling




Default transition to
Initial pseudostate

LampOff _
[ > ] flash/ LampFlashing \
Lentry/lamp.off() as
1 =SSO
off/ entry/lamp:on()
1sec/
on/
¥ on/ =l 2ShOff
( Lampon ENtRy/iameroii()

Lentry/lamp.on()J

/

78
u '[}TI'EWEI SEG3101 (Fall 2010). Functional Modeling

Group transition J




e R R e
= i i

* Triggered by a completion event
« Automatically generated when an embedded state machine terminates

/ TN
4 Committing O Completion transition

(without trigger)
S

CommitDone

79
uOttawa SEG3101 (Fall 2010). Functional Modeling



. I\/Iany transitions can share the same trlggerlng event
* When leaving, the most deeply embedded one takes precedence

* The event disappears whether it triggers a transition or not

/ LampFlashing \

on/

on/ off/

v

80
uOttawa SEG3101 (Fall 2010). Functional Modeling



S1

exit/exS1

3

E/actE

S2

entry/enS2

uOttawa

3

/INitS2

2/

Action sequence on transition E:

exS11 = exS1 = actE = enS2 = nitS2 = enS21

SEG3101 (Fall 2010). Functional Modeling

81



\.

Dialing

( Start

N

entry/ start dial tone

exit/ stop dial tone

digit(n) ( Partial Dial

[number.isValid()]

>@®

entry/number.append(n) y

digit(n)

J

* What should be added to this state machine to more fully
describe the dialing behavior?

uOttawa

SEG3101 (Fall 2010). Functional Modeling

82



ReadAmountSM )

[selectAmount

abort
W otherAmount
amount W
EnterAmount abort
J aborted

®

ok

uOttawa

again

83

SEG3101 (Fall 2010). Functional Modeling



* Encapsulation of a sub-state machines

uOttawa

ATM

.—'[ VerifyCard ]

OutOfService]‘i ReadAmountSM

aborted

again
rejectTransaction

{ VerifyTransaction

acceptCard ’
outOfService ReadAmount : %

releaseCard v

ReleaseCard ]

SEG3101 (Fall 2010). Functional Modeling

84



Y e

¢ EXleCltIy SeleCt event ( Wait h 4 Process w

order ready
for later treatment L | orderready  defer J
o An event may be JK_ — pmce;é o / process order
If order reacly occurs here,

it is deferred until the transition to Wait.

Deferred Event j

If the machine becomes reacly now,
we do not want to cancel gnnding the coffee.

deferred if it does not
trigger a transition in

the state which defers [ Machine ]
the event -

. turn on machine
® Saved until the system _
is in a state that does [mxhiﬁfffgg,:gdefﬂ

Not defer the event do / grind coffee Therefore, the machine-reacly evert is deferred.
* Possible to model a A
required event that [ Waiting j
The machine-ready evert acts now
ma‘y Ooccur before or machine ready €ven if it occurred during the previous
after another required state
eve nt [ Brewing ]
do / brew coffee

Source: UML Reference Manual

85
uOttawa SEG3101 (Fall 2010). Functional Modeling



* Remember the last
active sub-state before
the most recent exit
from the composite
State

This transition stores a history.

* Shallow history (H)

B
- Remember state at the / interﬁ;t/
same nesting depth as (A T ?
histo ry State resume\
This transition does not
invoke history. This transition irvokes the
stored history state.
. ' If it is the first transition into B,
® Deep history (H*) o \/ it invokes state A2
* Remember state at any This indicates the stored history state
. to use If the composite state
neStIng depth has never been entered.

Source: UML Reference Manual

uOttawa SEG3101 (Fall 2010). Functional Modeling

86



° Comblne many concurrent perspectlves — Iinteractions across
regions typically done via shared variables

age

/ financialStatus
ﬁ N\
r\rl it

/ financialStatus

*w

/

= D

87
u {}TtEWEI SEG3101 (Fall 2010). Functional Modeling

J




L) ¢
L]

7 g g 7 -

* All mutually orthogonal regions detect the same events and
respond simultaneously (possibly interleaved)

/ legalStatus financialStatus \

EeiW A elefinle

robBank/ robBank/

@2,

v

88
u '[}TI'EWEI SEG3101 (Fall 2010). Functional Modeling



sane : Boolean

flying : Boolean

flightStatus \

=MVinle]
anliry/ibyire) i=Ent

Catch22

/sanityStatus

request
Grounding/

(~sane)/

Cirollpniclee

89
uOttawa SEG3101 (Fall 2010). Functional Modeling



I CourseAttempt \

/ Studying

labd lab don
H Labl ]&[ Lab? ] e::@)
HTerm Proj ect] project done @)

90
uOttawa SEG3101 (Fall 2010). Functional Modeling



e N\
ATM Behaviour
"""""""""""" g Statemachine
acceptCard()
outOfService()
amount() - /

/\

FlexibleATM Behaviour

Statemachine
otherAmount()

rejectTransaction()

91
u()ttawa SEG3101 (Fall 2010). Functional Modeling



® (Ver_ifyCard
| {final}

acceptCard

ReadAmount

ffinal} |

OutOfService}f“tOfserViC%(

v releaseCard

{ VerifyTransactionH ReleaseCard}
{final} {final}

92
llOttﬂWﬂ SEG3101 (Fall 2010). Functional Modeling



® States can be added and

extended

® Regions can be added and
extended

®* Transitions can be added or
extended

« Actions may be replaced
» Guards may be replaced
» Targets may be replaced

®* Be very careful. one would like
that all properties that can be proved
for the abstract model, also hold for the
detailed model (and possibly more
properties). But this is not true in
general — it depends on what

extensions have been made.
uOttawa

FlexibleATM {extended})

-

ReadAm

[ SelectAmount

ount {extended}\

otherAmount

o

ok

EnterAmount ]

[ )

rejec{Transaction

[ VerifyTransaction ]

SEG3101 (Fall 2010). Functional Modeling




W
Vid

a - - 7 5 7 i i - s #
L e : Sl

* Specifies which operations can be called in which state and
under which condition

» Allowed call sequences — legal transitions, order of invocation of
operations

» Transitions do not include actions
* May be associated with ports

Door { protocol} )

[doorWay.isEmpty()] close/

create/ Opened

open/
unlock/

94
uOttawa SEG3101 (Fall 2010). Functional Modeling




.....
......

.......
.....

o Xy - M

® Transitions specification may include pre- and postconditions

o

Equivalent to pre and post
conditions added to the related
operations:

takeOff()

? Pre
:_. -in state "checked"
onGround check() ::l checked | -cleared for take off
ﬁ) \ Post
ng:&ef%fm take off] -landing rear is retracted
|, MManding rear is retracted] -in state "flying"

(I flying |
land()

. 95
uOttawa SEG3101 (Fall 2010). Functional Modeling



l (ID>10]

MinorReg=Id; MajorReq=Id,;

A

Minor(ld) > Major(ld)>
[ Busy }

i~ 96
uOfttawa SEG3101 (Fall 2010). Functional Modeling




State Machine-Based Analysis

@ uOttawa




® Several possible alternatives which depend on the
formalisms and tools

e Simulation

» Let the behavior evolve more or less randomly

« Can be interactive
e Test

 Verify that certain traces are supported (or rejected) by the machine
» Reachability analysis

 All states can be reached and all transitions can be traversed

* No unhandled event in each state

» Absence of deadlocks (in communicating state machines)

98
uOttawa SEG3101 (Fall 2010). Functional Modeling



« Conformance checking

Between two machines (for example, one abstract and the other one more
concrete)

Reduce non-determinism

Reduce optional behavior (compliant, but some behaviors are not
supported)

Extension (consistent, but some new events are treated and lead to new
behaviors)

* Equivalence checking

« Between two machines (for example, one abstract and the other one more
concrete)

» Several levels of equivalence: traces, refusals, tests, observational
equivalence...

uOttawa SEG3101 (Fall 2010). Functional Modeling

99



 Model Checking Model Property

» Verifies that the model satisfies temporal logic
properties, for example:

 If A occurs, B could possibly occur

If C occurs, D always occurs Model Checker

- Traverse systematically all possible behaviors / \
Yes

(execution paths) of the machine No
» Generated in advance or on the fly trace to error

» Model checker verifies M = P (if not a trace of states and transitions
leading to the violation of P is produced)

« Major obstacle is state explosion
e Theorem proving

» Prove by deduction or other formal approaches some properties of the
state machine - tools often allow interactive proving

100
uOttawa SEG3101 (Fall 2010). Functional Modeling



