
Gregor v. Bochmann, University of Ottawa

Based on Powerpoint slides by Gunter Mussbacher
with material from:

K.E. Wiegers, D. Leffingwell & D. Widrig, M. Jackson, I.K. Bray, B. Selic,
Volere, Telelogic, D. Damian, S. Somé 2008, and D. Amyot 2008-2009

Behavioral Modeling

SEG3101 (Fall 2010)

2
SEG3101 (Fall 2010). Functional Modeling

Table of Contents
• An introduction to modeling is already given in the slides on

“Introduction to Requirements Analysis and Specification”

• Structural modeling is discussed in separate slides.

• Here we discuss a four selected approaches for modeling
behavioral aspects of requirements. For the last three
approaches, we discuss the UML notations in detail.

• Structured Analysis
• UML Activity Diagrams, also Use Case Maps (see separate slides)
• UML Sequence Diagrams
• UML State Diagrams

• We also give an overview of UML version 2 and discuss for
each of these approaches, how a model can be used for
analysis (validation, verification – functional and non-
functional) and implementation development.

• Get the habit of analysis – analysis will in time enable synthesis to become your
habit of mind.1[1] Frank Lloyd Wright (1867 - 1959)

3
SEG3101 (Fall 2010). Functional Modeling

Structured Analysis

5
SEG3101 (Fall 2010). Functional Modeling

Structured Analysis
• Data-oriented approach

• Based on analysis of information flow
• Models

• Dataflow Diagram (DFD) – flow of information in system
• Entity Relationship Diagrams (ERD) – describe data
• Data Dictionary (DD) – define all data elements
• State Diagram – describe state-based behavior

• Mainly used for information systems
• Extensions have been developed for real-time systems

• Analysis consists of modeling current system (can be a
manual system)

• New system derived from understanding current system
• What if there is no current system?

Introduction Structured Analysis OO Analysis Problem Frames State Machine-Based Analysis Triage/Prioritization

6
SEG3101 (Fall 2010). Functional Modeling

Popular Approaches (at least once upon a time…)
Structured Analysis is historically important. Here are some of

the more popular versions:

• Structured Analysis and Design Technique (SADT) by Doug
Ross

• Structured Analysis and System Specification (SASS) by
Yourdon and DeMarco

• Structured System Analysis (SSA) by Gane et Sarsan
• Structured Systems Analysis and Design (SSADM)
• Structured Requirements Definition (SRD) by Ken Orr
• Structured Analysis / Real Time (SA/RT) by Ward and Mellor
• Modern Structured Analysis by Yourdon

Introduction Structured Analysis OO Analysis Problem Frames State Machine-Based Analysis Triage/Prioritization

7
SEG3101 (Fall 2010). Functional Modeling

Structured Analysis – Methodology (SASS Steps)
1. Analysis of current physical system

• DFD to show current data flow through the organization
• Shows physical organizational units or individuals (could be called

“agents”)
2. Derivation of logical model (existing problem domain)

• Logical functions replace physical agents
3. Derivation of logical model of proposed new system

• DFD modified to reflect system boundaries and updated organization
of the environment

4. Implementation of new system
• Some architectural alternatives are considered

Introduction Structured Analysis OO Analysis Problem Frames State Machine-Based Analysis Triage/Prioritization

8
SEG3101 (Fall 2010). Functional Modeling

Example: Yacht Race Results – Analyze current system (1)

• Elicitation plan:

• Elicitation notes:

Introduction Structured Analysis OO Analysis Problem Frames State Machine-Based Analysis Triage/Prioritization

Source: Bray, 2004

9
SEG3101 (Fall 2010). Functional Modeling

Example: Yacht Race Results – Analyse current system (2)

• Elicitation notes (suite)

10
SEG3101 (Fall 2010). Functional Modeling

Example: Yacht Race Results – Analyse current system (3)

Domain model (ERD)

Data Dictionary (DD)

11
SEG3101 (Fall 2010). Functional Modeling

Example: Yacht Race Results – Analyse current system (4)

Left: SSADM Diagram showing data flow
(arrows), functions (boxes with indication of
agents), and stored data (between two
horizontal lines). The simple boxes are agents
or external data.

Below: A more modern notation is shown. Here
functions are presented in circles. A different
system structure is adopted in this diagram.

12
SEG3101 (Fall 2010). Functional Modeling

Example: Yacht Race Results – Analyse current system (5)

Definition of the function Calculate-handicap-result

Refinement of the function

Calculate-series-result

13
SEG3101 (Fall 2010). Functional Modeling

Example – Define logical view and new system scope

Notes:
The blue line defines the
boundary of the system-to-be
with its environment. The
yellow functions are
performed by the system.

The diagram defines implicitly
the system interfaces.

It also suggests an internal
design for the system-to-be.
In this case, no revision of the
system structure has been
proposed for the new system.

14
SEG3101 (Fall 2010). Functional Modeling

Structured Analysis – Problems
• Overemphasis on modeling (there’s more to analysis!)
• Models the preexisting solution system (rather than the

application domain)
• Essentially process-based models (encourages structural

model of the preexisting system)
• Difficulty in integrating DFD and ERD models
• No explicit mention of requirements!

• Implicit assumption that the preexisting system already meets the
requirements apart from not being computer-based!

• SSADM1 eventually added the Problem/Requirements List (PRL)
• This assumption is carried through into design (new system

inherits its basic structure from the preexisting system)
• Lack of a truly behavioral specification

• Where are the process descriptions, à la SDL?

Introduction Structured Analysis OO Analysis Problem Frames State Machine-Based Analysis Triage/Prioritization

[1] Structured System Analysis and Design Methodology

Introduction to the Unified
Modeling Language (UML)

16
SEG3101 (Fall 2010). Functional Modeling

Systems, Models, and Views
• A model is an abstraction describing a subset of a system

(filtering out unimportant details)
• A view depicts selected aspects of a model
• A notation is a set of graphical and/or textual rules for

depicting views
• Views and models of a single system may overlap each other

– examples:
• System: Aircraft
• Models: Flight simulator, scale model
• Views: All blueprints, electrical wiring, fuel system

• Programming language vs. model

System Model View
**

Depicted byDescribed by

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

17
SEG3101 (Fall 2010). Functional Modeling

History of UML

Source: http://en.wikipedia.org/wiki/Unified_Modeling_Language

Jacobson
Rumbaugh

Booch

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

18
SEG3101 (Fall 2010). Functional Modeling

UML 2.x
• Object Management Group (OMG) standard

• Version 2.0 released in 2005
• Current version is 2.3 (May 2010)
• http://www.omg.org/uml/

• Some key points (new in Version 2)
• Restructuring of the metamodel

• Infrastructure (semantics) and superstructure (notation)

• New or modified diagrams
• Simpler and more powerful profile mechanisms
• Diagram exchange format (between UML tools)
• OCL 2.0 (Object Constraint Language – for input/output assertions,

invariants, etc. (resembles first-order logic)

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

19
SEG3101 (Fall 2010). Functional Modeling

Thirteen Diagram Types in UML 2.x
• Few changes

• Use case, object, package, deployment diagrams
• Major improvements but less relevant to requirements

engineering
• Component and communication (collaboration) diagrams

• Major improvements and interesting for requirements
engineering

• State machine (integration of SDL as a profile), class, activity
(complete re-write of the semantics), and sequence diagrams

• New
• Timing, interaction overview, composite structure diagrams

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

20
SEG3101 (Fall 2010). Functional Modeling

Classification of Diagram Types
• According to UML Reference Manual

• Structural
• Class, object, composite structure, component, and use case diagrams

• Dynamic (that is, describing dynamic behavior)
• State machine, activity, sequence, communication, timing, and interaction

overview diagrams

• Physical
• Deployment diagrams

• Model Management
• Package diagram

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

21
SEG3101 (Fall 2010). Functional Modeling

Most Relevant for Requirements Engineering
• Use case diagram

• Use cases structuring
• Class diagram

• Domain modeling
• Activity diagram (concepts much related to concepts of Use

Case Maps)
• Workflow and process modeling

• Sequence diagram
• Modeling of message exchange scenarios

• State machine diagram
• Detailed behavioral specification

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

Activity Diagram

23
SEG3101 (Fall 2010). Functional Modeling

UML 2.x Activity Diagrams
• An Activity Diagram models behavior in terms of sub-activities

(actions) and data flow. Sometimes, the flow is simply control
flow (a token without data).

• Actions are initiated because
• The required input data (or control) tokens become available

• because other actions finish executing, or

• the action is the initial action and all required input data has been provided
by the environment in which the activity diagram is executed

• Some interrupting event occurs and the normal flow of control is
changed

• The behavior of an action may be defined
• Informally, by its name and an explanation
• By input and output assertions about input and output data objects and

the “state” of the system
• By defining its behavior by a separate Activity Diagram

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

24
SEG3101 (Fall 2010). Functional Modeling

Activity Diagrams in UML version 2
• In UML version 1, the way the semantics of Activity Diagram

was described, was confusing. (It was based on State
Machines, which is not natural, and nobody liked it).

• In UML version 2, the meaning of Activity Diagrams has been
explained (in a completely different manner). It is now much
more easier to understand, and it is based on the tokens of
Petri nets (which are used for modeling control or data flow
tokens).

• There are also some interesting additions to the notation
• Terminal node types, pins, partitions, exceptions

25
SEG3101 (Fall 2010). Functional Modeling

Basic Notational Elements of Activity Diagrams
• Describe the

dynamic behavior
of a system as a
flow of activities
(workflow)

• Flow
• Sequence
• Alternative
• Parallel

• Note: in this diagram,
the data flow objects are
not shown. They may be
shown as boxes on the
control flow lines.

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

26
SEG3101 (Fall 2010). Functional Modeling

Action Flow – Join and Fork
• Join: action4 starts after action1, action2, and action3 have

completed (synchronization)

• Fork: flow continues to action2, action3, and action4 after
action1 (concurrent execution)

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

27
SEG3101 (Fall 2010). Functional Modeling

Action Flow – Decision and Merge
• Decision: action2 or action3 or action4 occurs after action1

depending on condition

• Merge: flow continues to action4 after either action1 or
action2 or action3 (no synchronization)

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

28
SEG3101 (Fall 2010). Functional Modeling

Action Flow – Implicit Join and Implicit Fork
• Action3 starts after action1 and action2 (implicit join) and then

action4 and action5 can start (implicit fork)

• Pre- and postconditions may
also be assigned

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

29
SEG3101 (Fall 2010). Functional Modeling

Two Terminal Nodes

• Final activity node (left)
• Terminates the entire activity (and returns to the parent one, if any)

• Final flow node (right)
• Only terminates the flow (the activity continues if there are unfinished

parallel flows)

Build
Component

[more components
to be built]

[no more
components
to be built]

Install
Component

[no more
components
to be installed]

[more
components
to be installed]

Deliver
Application

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

30
SEG3101 (Fall 2010). Functional Modeling

Object Flow with and without Pins

• Data (objects) passing along activity edges (can be specified
as action pins – see right and bottom)

• Activities may have multiple input and output pins
• Possibility to characterize properties of a data flow link:

• “stream” means that several tokens may be generated and waiting to
be processed. Different selection behaviors (e.g., FIFO, LIFO)

• Some transformation behavior may be specified
• Possibility to constrain the nature (e.g. state) of the object

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

31
SEG3101 (Fall 2010). Functional Modeling

Activity Diagram – Example
Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

32
SEG3101 (Fall 2010). Functional Modeling

Partitions
• Partitions replace “swimlanes” in earlier UML versions
• Can have multiple dimensions and be hierarchical
• Getting closer to UCM components, but not quite there yet

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

33
SEG3101 (Fall 2010). Functional Modeling

Partitions – Examples
Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

34
SEG3101 (Fall 2010). Functional Modeling

Exceptions
• An activity zone (left) can have exceptions (zigzag lines)

handled by other activities (right)

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

35
SEG3101 (Fall 2010). Functional Modeling

Region Interruption
Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

UML and URN

37
SEG3101 (Fall 2010). Functional Modeling

When to Use UML
• Use Case Diagrams

• Actors, system boundary, and structure of use cases
• Applicable to system, subsystem, component...

• Class Diagrams
• Domain modeling

• Activity Diagrams – here one can also use Use Case Maps
• Process modeling (business or other)
• Modeling of data and control flow

• Sequence Diagrams
• Modeling interactions between actors and system or components

• State Machine Diagrams
• Modeling detailed behavior (objects, protocols, ports)
• Modeling the behavior of the system (black box)

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

38
SEG3101 (Fall 2010). Functional Modeling

UCM or UML Activity Diagrams?
• UCM and activity diagrams have many concepts in common

• Responsibility ↔ action
• Start/end points
• Alternatives (fork / join)
• Concurrency (fork / join)
• Stub / plug-in ↔ action / sub-activity diagram
• Association between elements and components / partition
• Both may represent operational scenarios and business processes

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

39
SEG3101 (Fall 2010). Functional Modeling

Example comparison

Receive
Order Fill

Order Send
Invoice

Ship
Order

Make
Payment

Acccept
Payment

Close
Order

Warehouse

Office

Client

[Order
rejected]

[Order
accepted]

40
SEG3101 (Fall 2010). Functional Modeling

Unique to UCM
• Dynamic stubs with several plug-ins

• Activity diagrams have a single sub-activity diagram per action
• Plug-ins can continue in parallel with their parent model

• Sub-activity diagrams must complete before returning to the parent
activity diagram

• 2D graphical layout of components
• Definitions of scenarios (integrated testing capabilities!)
• Integration with GRL in URN

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

41
SEG3101 (Fall 2010). Functional Modeling

Unique to Activity Diagrams
• Data flow modeling
• Interruptible regions
• Conditions on parallelism (branches of an AND-fork)
• Constraints on action pins
• Integration with UML

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

Model-Based Analysis
(for Workflow models)

Sequence Diagram

44
SEG3101 (Fall 2010). Functional Modeling

UML 2.x Sequence Diagrams
• Major improvements in UML version 2, based on ITU-T’s

Message Sequence Charts (MSC)

• The most important one: combined fragments
• Other improvements

• (A)synchronous interactions
• References
• Hierarchical decomposition
• Temporal aspects
• …

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

45
SEG3101 (Fall 2010). Functional Modeling

Basic Notational Elements of Sequence Diagrams
• Describe the dynamic behavior as interactions between so-

called “participants” (e.g. agents, actors, the system, system
components). For each participant, there is a “lifeline”

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

participant

46
SEG3101 (Fall 2010). Functional Modeling

Lifelines and (A)synchronous Interactions
• Participants, shown using

lifelines, participate in the
interaction sequence by
sending / receiving
messages

• Messages can be
synchronous or
asynchronous

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

47
SEG3101 (Fall 2010). Functional Modeling

Combined Fragments
• Allow multiple sequences to be represented in compact form

(may involve all participants or just a subset)
• Combined fragment operators

• alt, for alternatives with conditions
• opt, for optional behavior
• loop(lower bound, upper bound), for loops
• par, for concurrent behavior
• critical, for critical sections
• break, to show a scenario will not be covered
• assert, required condition
• ignore/consider(list of messages), for filtering messages
• neg, for invalid or mis-use scenarios that must not occur
• strict or seq, for strict/weak sequencing (WHAT IS THIS ?)
• ref, for referencing other sequence diagrams

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

48
SEG3101 (Fall 2010). Functional Modeling

Combined Fragments – Alternative
• Alternative (operator alt)

• Multiple operands (separated by
dashed lines)

• Each operand has guard condition
(no condition implies true)

• One will be chosen exclusively –
nondeterministically if more than one
evaluates to true

• Special guard: else
• True if no other guard condition is

true

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

49
SEG3101 (Fall 2010). Functional Modeling

Combined Fragments – Optional
• Optional (operator opt)

• To specify a
guarded behavior
fragment with no
alternative

• Special case of alt
• Equivalent to an alt

with two operands
• The first is the same

as the operand for
the opt

• The second is an
empty operand with
an else guard

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

50
SEG3101 (Fall 2010). Functional Modeling

Combined Fragments – Loop
• Loop (operator loop)

• Loop fragment may
execute multiple times

• At least executed the
minimum count

• Up to a maximum count
as long as the guard
condition is true (no
condition implies true)

Source for Password Example: UML Reference Manual

minimum, maximum count

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

51
SEG3101 (Fall 2010). Functional Modeling

Combined Fragments – Concurrency
• Concurrency (operator par)

• Two or more operands that execute in parallel

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

52
SEG3101 (Fall 2010). Functional Modeling

Concurrency Quiz – Part One!
• Is the interaction on the right a valid sequential trace that can

be generated from the interaction with the par combined
fragment on the left?

• No! The sequences of the two operands may be interleaved
but the ordering defined for each operand must be
maintained.

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

53
SEG3101 (Fall 2010). Functional Modeling

• What are valid
sequential traces
for this interaction
with the critical
operator?

• In the main loop, the
player repeatedly
displays frames. At any
time (because it is within a par combined fragment), the user
can send a pause message to the player. Afterwards the user
sends a resume message. Because these two messages are
in a critical region, no displayFrame message may be
interleaved. Therefore, the player stops displaying frames
until the resume message occurs!

Concurrency Quiz – Part Two!

Source: UML Reference Manual

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

54
SEG3101 (Fall 2010). Functional Modeling

Combined Fragments – Break
• Concurrency (operator

break)
• Execute the break

combined fragment if the
guard condition is true and
then jump to the end of the
interaction

• If the guard condition of the
break combined fragment is
not true, do not execute the
break combined fragment
and continue with the
interaction below the break
combined fragment

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

55
SEG3101 (Fall 2010). Functional Modeling

Combined Fragments – Assertions and State Invariants

• Assertions (operator assert)
• Behavior of assert combined fragment must occur
• Often combined with consider and ignore
• Consider: other messages may occur but we do not care about them
• Ignore: listed messages

may occur but we do not
care about them

• State invariant
• Evaluated when the next

event occurs on lifeline
• Small rectangle with

rounded corners or
curly brackets

• Useful for testing

sd M ignore {t,r}

mystate

:X :Y :Z

consider {q,v,w}

s

v

v

q

{Y.p == 15}

assert

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

56
SEG3101 (Fall 2010). Functional Modeling

• What are valid sequential traces for this interaction with the
assert and consider operators?

• Start; any other messages except start may occur; stop must
occur

Assertion Quiz!

Source: UML Reference Manual

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

57
SEG3101 (Fall 2010). Functional Modeling

Nested Combined Fragments
Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

58
SEG3101 (Fall 2010). Functional Modeling

Combined Fragments – References (1)
• References (operator ref)

• Called interaction use
• Includes

another
sequence
diagram

• Parameters
may be
passed and
a result
returned

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

59
SEG3101 (Fall 2010). Functional Modeling

Combined Fragments – References (2)
• Referenced sequence

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

60
SEG3101 (Fall 2010). Functional Modeling

Combined Fragments – References (3)
• Reference can connect to a gate (border of diagram frame)

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

61
SEG3101 (Fall 2010). Functional Modeling

Hierarchical Decomposition of Participants
Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

62
SEG3101 (Fall 2010). Functional Modeling

Temporal Aspects
Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

63
SEG3101 (Fall 2010). Functional Modeling

UML 2.x Timing Diagrams
• Behavioural view similar to sequence diagrams but presented

with a graphical syntax inspired from signals in logic circuits
• Can be used to specify time-dependent interactions

• Primary purpose of the diagram is to reason about time
• Focus on

conditions
changing
within and
among
lifelines
along a
linear time
axis

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

64
SEG3101 (Fall 2010). Functional Modeling

UML 2.x Interaction Overview Diagrams
• Similar to an activity diagram

that references or includes
sequence diagrams

• Give an overview of the flow
of control

• Nodes are interaction
diagrams

Source: http://www.visual-paradigm.com/VPGallery/diagrams/InteractionOverviewDiagram.html

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

State Machine Diagram

66
SEG3101 (Fall 2010). Functional Modeling

UML 2.x State Machine Diagrams
• Model discrete behavior (finite state-transition systems)

• System
• Component
• Class
• Protocol

• Several formal definitions as well as textual and graphical
syntax of state machines exist

• We focus on the state machines of UML 2.x
• Several techniques and tools exist for defining, analyzing,

combining, and transforming (e.g., to code) state machines

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

67
SEG3101 (Fall 2010). Functional Modeling

ONONON ONONON

OFFOFFOFFOFFOFFOFF

Automaton
• A machine whose output depends not only on the input but

also on the history of past events
• Its internal state characterizes

this history

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

off

on

Lamp OnLamp OnLamp On

Lamp OffLamp OffLamp Off

off

on
ONONON

OFFOFFOFF

68
SEG3101 (Fall 2010). Functional Modeling

• Describe the dynamic behavior of an individual object (with
states and transitions)

Basic Notational Elements of State Machine Diagrams
Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

69
SEG3101 (Fall 2010). Functional Modeling

Types of State Machines

• UML allows both types to be mixed

on

off

Lamp On
print(”on”)
Lamp OnLamp On
print(print(””onon””))

Lamp
Off

Lamp Lamp
OffOff

off

on

Moore Automaton

on

off

Lamp
On

Lamp Lamp
OnOn

Lamp
Off

Lamp Lamp
OffOff

off

on/print(print(””onon””))

Mealy Automaton

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

70
SEG3101 (Fall 2010). Functional Modeling

Variables (“Extended” States)

off

on

Lamp OnLamp OnLamp On

Lamp OffLamp OffLamp Off

off

on/ctr := ctr + 1

ctr : Integerctrctr : Integer: Integer

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

71
SEG3101 (Fall 2010). Functional Modeling

Modeling Behavior
• In general, state machines are suitable for describing reactive

systems based or events
• Not appropriate to describe continuous systems (e.g.,

spacecraft trajectory control, stock market predictions)

timetime

thresholdthreshold

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

72
SEG3101 (Fall 2010). Functional Modeling

top

UML State Machine Diagrams – Summary

ReadyReadyReady

stop

/ctr := 0stop

StateStateState

TriggerTriggerTrigger

ActionActionAction

Initial
Pseudostate

InitialInitial
PseudostatePseudostate

TransitionTransitionTransition

Final StateFinal StateFinal State
DoneDoneDone

Composite StateComposite StateComposite State

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

73
SEG3101 (Fall 2010). Functional Modeling

Entry and Exit Actions

LampOnLampOnLampOn
entry/lamp.on();

exit/lamp.off();

e1e1

e2e2

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

74
SEG3101 (Fall 2010). Functional Modeling

Resulting action sequence:
printf(“exiting”);
printf(“to off”);
lamp.off();

Resulting action sequence:Resulting action sequence:
printf(printf(““exitingexiting””););
printf(printf(““toto offoff””););
lamp.offlamp.off();();

Action Ordering

• Output actions: transition prefix
• Input actions: transition postfix

printf(“exiting”);
printf(“needless”);
lamp.off();

printf(printf(““exitingexiting””););
printf(printf(““needlessneedless””););
lamp.off();lamp.off();

off/off/printf(printf(““needlessneedless””););

off/off/printf(printf(““toto offoff””););
LampOffLampOffLampOff

entry/lamp.off();entry/lamp.off();

exit/exit/printf(printf(““exitingexiting””););

LampOnLampOnLampOn
entry/lamp.on();entry/lamp.on();

exit/exit/printf(printf(““exitingexiting””););

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

75
SEG3101 (Fall 2010). Functional Modeling

ErrorErrorError
entry/entry/printf(printf(““errorerror!!””))

State Activity (Do)
• Creates a concurrent process that will execute until

• The action terminates, or
• We leave the state via an exit transition

do/alarm.ring()

“do” activity““dodo”” activityactivity

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

76
SEG3101 (Fall 2010). Functional Modeling

Guards (Conditions)
• Conditional execution of transitions

• Guards must not have side effects

SellingSellingSelling

UnhappyUnhappyUnhappy

HappyHappyHappy

bid bid [(value >= 100) & (value < 200)] /sell/sell

bid bid [value >= 200] /sell/sell

bid bid [value < 100] /reject/reject

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

77
SEG3101 (Fall 2010). Functional Modeling

Hierarchical State Diagrams
• Composed states, to manage complexity

LampFlashingLampFlashingLampFlashingflash/flash/

1sec/1sec/
1sec/1sec/

FlashOffFlashOffFlashOff
entry/lamp.off()entry/lamp.off()

FlashOnFlashOnFlashOn
entry/lamp.on()entry/lamp.on()off/off/

LampOffLampOffLampOff
entry/lamp.off()entry/lamp.off()

LampOnLampOnLampOn
entry/lamp.on()entry/lamp.on()

on/on/
on/on/

on/on/

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

78
SEG3101 (Fall 2010). Functional Modeling

LampFlashingLampFlashingLampFlashing

1sec/1sec/
1sec/1sec/

FlashOffFlashOffFlashOff
entry/lamp.off()entry/lamp.off()

FlashOnFlashOnFlashOn
entry/lamp.on()entry/lamp.on()off/off/

LampOffLampOffLampOff
entry/lamp.off()entry/lamp.off()

LampOnLampOnLampOn
entry/lamp.on()entry/lamp.on()

on/on/

Group Transitions

flash/flash/

on/on/

Default transition to
Initial pseudostate

Default transition toDefault transition to
Initial Initial pseudostatepseudostate

Group transitionGroup transitionGroup transition

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

79
SEG3101 (Fall 2010). Functional Modeling

Completion Transition
• Triggered by a completion event

• Automatically generated when an embedded state machine terminates

CommittingCommittingCommitting

Phase1Phase1Phase1

Phase2Phase2Phase2
CommitDoneCommitDoneCommitDone

Completion transition
(without trigger)

Completion transitionCompletion transition
(without trigger)(without trigger)

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

80
SEG3101 (Fall 2010). Functional Modeling

LampFlashingLampFlashingLampFlashing

off/off/
FlashOffFlashOffFlashOff

FlashOnFlashOnFlashOn

Triggering Rules
• Many transitions can share the same triggering event

• When leaving, the most deeply embedded one takes precedence
• The event disappears whether it triggers a transition or not

on/

on/

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

81
SEG3101 (Fall 2010). Functional Modeling

Action Ordering – Composite States

S1
exit/exS1

S1S1
exit/exS1exit/exS1

S11
exit/exS11

S11S11
exit/exS11exit/exS11

S2
entry/enS2

S2S2
entry/enS2entry/enS2

S21
entry/enS21

S21S21
entry/enS21entry/enS21

/initS2/initS2
E/E/actEactE

Action sequence on transition E:

exS11 exS1 actE enS2 initS2 enS21

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

82
SEG3101 (Fall 2010). Functional Modeling

Exercise I – Describe this Behavior

• What should be added to this state machine to more fully
describe the dialing behavior?

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

83
SEG3101 (Fall 2010). Functional Modeling

“Reusable” State Machines (1)

definition
of

exit point

ReadAmountSM

selectAmount

EnterAmount

ok

abort

aborted

amount

otherAmount

abort

again

definition
of

entry point

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

84
SEG3101 (Fall 2010). Functional Modeling

“Reusable” State Machines (2)
• Encapsulation of a sub-state machines

VerifyCard

OutOfService

acceptCard

ReleaseCardVerifyTransaction

outOfService

releaseCard

ReadAmount :
ReadAmountSM

aborted

use of
exit

point

use of
entry point

rejectTransaction

again

ATM

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

85
SEG3101 (Fall 2010). Functional Modeling

Deferred Events (this is called SAVE in SDL)
• Explicitly select event

for later treatment
• An event may be

deferred if it does not
trigger a transition in
the state which defers
the event

• Saved until the system
is in a state that does
not defer the event

• Possible to model a
required event that
may occur before or
after another required
event

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

Source: UML Reference Manual

Deferred EventDeferred EventDeferred Event

86
SEG3101 (Fall 2010). Functional Modeling

History State
• Remember the last

active sub-state before
the most recent exit
from the composite
state

• Shallow history (H)
• Remember state at the

same nesting depth as
history state

• Deep history (H*)
• Remember state at any

nesting depth

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

Source: UML Reference Manual

History StateHistory StateHistory State

87
SEG3101 (Fall 2010). Functional Modeling

Orthogonal Regions
• Combine many concurrent perspectives – interactions across

regions typically done via shared variables

ChildChild

AdultAdult

RetireeRetiree

ageage

PoorPoor

RichRich

financialStatusfinancialStatus

PoorPoor

RichRich

financialStatusfinancialStatus

ChildChild

AdultAdult

RetireeRetiree

ageage

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

88
SEG3101 (Fall 2010). Functional Modeling

OutlawOutlawOutlaw

LawAbidingLawAbidingLawAbiding PoorPoorPoor

RichRichRich

financialStatusfinancialStatuslegalStatuslegalStatus

Semantics of Orthogonal Regions
• All mutually orthogonal regions detect the same events and

respond simultaneously (possibly interleaved)

robBankrobBank// robBankrobBank//

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

89
SEG3101 (Fall 2010). Functional Modeling

Catch22Catch22Catch22
sanityStatussanityStatus flightStatusflightStatus

Interactions Between Regions
• Typically through shared variables

(flying)/(flying)/

Crazy
entry/sane := false;

CrazyCrazy
entry/sane := false;entry/sane := false;

Sane
entry/sane := true;

SaneSane
entry/sane := true;entry/sane := true;

requestrequest
Grounding/Grounding/

Flying
entry/flying := true;

FlyingFlying
entry/flying := true;entry/flying := true;

Grounded
entry/flying := false;

GroundedGrounded
entry/flying := false;entry/flying := false;

(sane)/(sane)/

(~sane)/(~sane)/

sane : Booleansane : Booleansane : Boolean

flying : Booleanflying : Booleanflying : Boolean

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

90
SEG3101 (Fall 2010). Functional Modeling

Exercise II – Describe this Behaviour

CourseAttempt

Studying

Lab1 Lab2lab done lab done

Term Project

Final Test

project done

pass

fail Failed Passed

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

91
SEG3101 (Fall 2010). Functional Modeling

Advanced Notation: State Machine Inheritance

ATM

acceptCard()
outOfService()
amount()

Behaviour
Statemachine

FlexibleATM

otherAmount()
rejectTransaction()

Behaviour

Statemachine

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

92
SEG3101 (Fall 2010). Functional Modeling

State Machine Inheritance – ATM

VerifyCard

ReadAmount

acceptCard

ReleaseCardVerifyTransaction

outOfService

releaseCard

OutOfService

{final}

{final}

{final}

{final}

ATM

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

93
SEG3101 (Fall 2010). Functional Modeling

State Machine Inheritance – FlexibleATM
• States can be added and

extended
• Regions can be added and

extended
• Transitions can be added or

extended
• Actions may be replaced
• Guards may be replaced
• Targets may be replaced

• Be very careful. One would like
that all properties that can be proved
for the abstract model, also hold for the
detailed model (and possibly more
properties). But this is not true in
general – it depends on what
extensions have been made.

ReadAmount

EnterAmount

SelectAmount

VerifyTransactionVerifyTransaction

EnterAmount
ok

otherAmount

rejectTransaction

{extended}

FlexibleATM {extended}

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

94
SEG3101 (Fall 2010). Functional Modeling

Door {protocol}

[doorWay.isEmpty()] close/

open/

create/ opened closed

locked

lock/
unlock/

Protocol State Machine
• Specifies which operations can be called in which state and

under which condition
• Allowed call sequences – legal transitions, order of invocation of

operations
• Transitions do not include actions

• May be associated with ports

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

95
SEG3101 (Fall 2010). Functional Modeling

Protocol State Machine – Pre/Postconditions
• Transitions specification may include pre- and postconditions

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

96
SEG3101 (Fall 2010). Functional Modeling

Alternative Notation (à la SDL)

Choice

Action
Sequence

Idle

Req(Id)

MinorReq=Id; MajorReq=Id;

[ID<=10]
[ID>10]

Minor(Id) Major(Id)

Busy

Introduction Class Diagram Activity Diagram Sequence Diagram State Machine Diagram Consistency UML and URN

Output

Input

State Machine-Based Analysis

98
SEG3101 (Fall 2010). Functional Modeling

State Machine-Based Analysis (1)
• Several possible alternatives which depend on the

formalisms and tools
• Simulation

• Let the behavior evolve more or less randomly

• Can be interactive

• Test
• Verify that certain traces are supported (or rejected) by the machine

• Reachability analysis
• All states can be reached and all transitions can be traversed

• No unhandled event in each state

• Absence of deadlocks (in communicating state machines)

Introduction Structured Analysis OO Analysis Problem Frames State Machine-Based Analysis Triage/Prioritization

99
SEG3101 (Fall 2010). Functional Modeling

State Machine-Based Analysis (2)
• Conformance checking

• Between two machines (for example, one abstract and the other one more
concrete)

• Reduce non-determinism

• Reduce optional behavior (compliant, but some behaviors are not
supported)

• Extension (consistent, but some new events are treated and lead to new
behaviors)

• Equivalence checking
• Between two machines (for example, one abstract and the other one more

concrete)

• Several levels of equivalence: traces, refusals, tests, observational
equivalence...

Introduction Structured Analysis OO Analysis Problem Frames State Machine-Based Analysis Triage/Prioritization

100
SEG3101 (Fall 2010). Functional Modeling

State Machine-Based Analysis (3)
• Model checking

• Verifies that the model satisfies temporal logic
properties, for example:

• If A occurs, B could possibly occur
If C occurs, D always occurs

• Traverse systematically all possible behaviors
(execution paths) of the machine

• Generated in advance or on the fly

• Model checker verifies M ⇒ P (if not a trace of states and transitions
leading to the violation of P is produced)

• Major obstacle is state explosion

• Theorem proving
• Prove by deduction or other formal approaches some properties of the

state machine - tools often allow interactive proving

Introduction Structured Analysis OO Analysis Problem Frames State Machine-Based Analysis Triage/Prioritization

